If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=576
We move all terms to the left:
x^2+x-(576)=0
a = 1; b = 1; c = -576;
Δ = b2-4ac
Δ = 12-4·1·(-576)
Δ = 2305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2305}}{2*1}=\frac{-1-\sqrt{2305}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2305}}{2*1}=\frac{-1+\sqrt{2305}}{2} $
| 24/b+9=16 | | 239=-x+164 | | 20x=-6+21x | | 8-t3=12 | | 281-v=137 | | 1/4m+6=12 | | 4(u+30)=40 | | e–17–e=11 | | 5m+-(6m+9)=11 | | 128-v=137 | | 17z−9z−-7z=-15 | | -m7+3=-4 | | (1/3)y+10=(1/7)y | | 9=19+z | | 3x-26=x+12 | | 128=-u+183 | | 9=19z | | 3/7x-5=1/2x+9 | | 8=9-s | | 6.387+2.8p=15.349 | | 0.6h=13.93 | | 4y-1/3y=5 | | 4x=16+3x+-3x | | 8.d+55=123 | | 2(x-x)=2x-8 | | x=49-6x | | 76.8y+5.31=12.99 | | 77=j/7+67 | | 30-w=5w | | 2a-3/5=2a-5/3 | | 6(1-3z)=-12 | | 9u=2u+21 |